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SUMMARY 
This paper presents a boundary element formulation for solution of planar Riabouchinsky cavity flow 
problems. An iterative procedure for adjusting the free surface position is developed and shown to be stable 
and convergent. Numerical results are compared with finite difference and finite element solutions, showing 
the superior accuracy of the BEM models. 
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INTRODUCTION 

The present paper considers the two-dimensional flow of an incompressible, inviscid fluid past a 
plate placed perpendicular to the flow direction in a channel of finite width and infinite length. 
Immediately behind the plate a cavity is formed containing air at a constant pressure; the primary 
objective of the study is to find the shape and size of this cavity. 

It is known from experiments what sort of shape the cavity should have behind the plate. 
However, it is not clear at all, from experiments or theory, what the cavity form is in the region far 
from the plate. This phenomenon, known as the closure condition, is still open to discussion and 
several models have been presented in the literature.'. In practice the downstream closure region 
is marked by considerable turbulence so that no potential flow solution can expect to be accurate 
in this region. However, most authors agree that within limits the choice of closure model has 
little effect on the flow at the upstream end of the ~ a v i t y . ~  

Herein the model proposed by Riabo~chinsky~ is considered. The model assumes that an 
image plate can be placed in the flow at some point downstream from the original plate and that 
the flow geometry will be symmetric about the line midway between the plates (Figure 1). Since 
the flow is also symmetric about the channel axis, only one-quarter of the region in Figure 1 needs 
to be considered in the numerical analysis (Figure 2). 

The determination of the free surface position CD is required as part of the solution of the 
problem. This generally involves an initial guess of this free streamline and the application of a 
systematic shifting algorithm to improve its location. 

Previous attempts using the finite difference method (FDM)5 and the finite element method 
(FEM)6 presented many difficulties owing to the need to mesh the entire flow domain. The 
presence of a (mild) singularity at  the separation point C requires the mesh to be very refined near 
this point and coarser elsewhere, i.e. a variable grid spacing. 
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Figure 1. Riabouchinsky cavity model 
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Figure 2. Definition of problem region 

rmation from a solution of a cavity flow problem is t,.e spatial location of 
the free surface and a knowledge of velocities and/or pressures along the boundaries. This 
realization leads one to feel that domain-type techniques are computationally inefficient and that 
the problem is ideally suited to a boundary element method (BEM) solution. This paper presents 
a BEM procedure in which linear elements are employed and the free surface position is 
determined iteratively. The iteration algorithm is a variant of the one employed by Cheng et 
and Catabriga and Wrobel' for calculation of sluice gate flows. 

A different BEM approach to the same problem was recently presented by Aitchison and 
Karageorghisg in which it is demonstrated that the determination of the free surface location is 
equivalent to the solution of a system of non-linear equations. Although the present algorithm is 
completely different in nature from that of Reference 9, the results obtained for some test 
problems are remarkably similar, as discussed at the end of this work. 

FORMULATION OF THE PROBLEM 

A sketch of the plane Riabouchinsky cavity model adopted in this work can be seen in Figure 2. 
The computational region is truncated at a certain distance upstream, where the flow is assumed 
to be parallel to the channel walls. 
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For the steady, irrotational, plane flow of an incompressible, inviscid fluid the following 
equations apply: 

au aU 
ax ay  
- + - = 0 (continuity), 

au au _ _ - _  - 0 (irrotationality), ay ax 

p + $ p q 2  + p g y  = a (Bernoulli), (3) 

in which u and u are the horizontal and vertical components of the velocity field whose magnitude 
is q =(u2 + p is the pressure, p is the fluid density, g is the acceleration due to gravity and 
p is Bernoulli’s constant. 

Introducing a streamfunction I) such that 

and substituting into (1) and (2), one can note that the continuity equation is identically satisfied 
and the irrotationality condition gives rise to Laplace’s equation 

v2* =o. ( 5 )  

The boundary conditions of the problem are as follows, referring to Figure 2. Line ABCD is a 
streamline and without loss of generality its value can be set to $ = 0. The channel wall, line EF, is 
also a streamline with value II/ = Q, where Q is the flow rate per unit width. Line DE is a symmetry 
axis, so &+/an = 0 can be applied. At the truncating boundary AF (of length H )  the onset velocity 
is constant; thus it is possible to apply either $ = Q y / H  or a $ / a n  = 0. 

The problem is solved by assuming an initial guess for the free surface position and using 
Bernoulli’s equation to correct it during an iteration process. It is customary to assume that the 
hydrostatic pressure is approximately uniform over the region of interest and to neglect the effects 
of gravity; as a consequence of (3) the fluid velocity is uniform in magnitude on the free streamline. 
This is an accurate assumption when gy 4 q2,  which holds true in this case.” 

Denoting quantities referenced to the cavity or free streamline by the subscript ‘c’, we may write 
from (3) 

in which p e  = p - pc  and the constant value of the pressure p c  has been incorporated into p. This 
expression permits computing the pressure at any point once the velocity field has been 
determined. 

P e  +4pq2 ‘ + P d  = B ,  (6) 

An important parameter in cavity flows is the Prandtl cavitation number u defined by 

where qo is the onset velocity magnitude (qo = Q / H ) .  
The problem can be made non-dimensional by putting 

X* = x / H ,  y* = y / H ,  $* = $ / Q .  (8) 

The mathematical problem to be solved is then described by the equations (dropping the 
asterisks for simplicity) 

V2$ = o  in ABCDEFA, (9) 
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* = 0  on AB, BC, CD, 

on DE, - = o  a* 
ax 

on AF, -=o  a* 
ax 

_ -  a* - - q c  on CD, 
an  

(13) 

with the cavitation number given by 

NUMERICAL SOLUTION 

For the numerical solution of the problem an initial free surface location has to be assumed. The 
boundaries of the region can then be discretized and the problem solved using a standard BEM 
methodology.’ 

In the present case, however, advantage was taken of the problem symmetry by using a 
fundamental solution which implicitly satisfies the symmetry conditions along the lines AB and 
DE in the form 

in which 5 and x are the source and field points respectively and I = AG. Thus only the lines BC, 
CD, EF and FA need to be discretized, reducing the total number of degrees of freedom of the 
problem. 

The boundary condition applied on the free streamline CD is $ = 0. The BEM solution then 
produces the value of at each point along the free surface. These values are all equal for the 
correct free surface position (but of course not for the assumed one) and it is essential that a 
procedure be devised to properly move the free surface in the steps of the iteration scheme so that 
the constant-velocity condition is more closely satisfied on the moved streamline. 

With the objective of obtaining a relation between increments of qc and y on the free surface 
points, we define 4 as the average velocity in a vertical section of the flow. Thus the flow rate (per 
unit width) can be expressed as 

or, in non-dimensional form, 

4(1 -y)= 1. (17) 
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The next step is to derive an approximate relation between 4 and qc. It is noted that in the 
region behind the plate Q(x) should increase with x and be lower than the free surface velocity 4,. 
The following relation was then adopted: 

- Y 
q = q  -- " 1 - y '  

which complies with the previous requirements (at least for the range of problems studied). 
Substituting into expression (17), we obtain 

1 
q c y = l  or q E = - .  

Y 

The iteration procedure will then be as follows: 

(i) Assume an initial free surface location. 
(ii) The BEM solution provides a$/& along the free surface. 
(iii) Calculate f l  at each free surface node i, i.e. 

Pi  = 3 P q 2 .  (20)  

(iv) Calculate Api = pc - Pi, in which 8, is the value of p at point C, the separation point. This 
value was selected because point C, the plate tip, is a fixed free surface point. 

(v) Calculate Ayi by substituting (19) into (20) to obtain 

(vi) Compute the relative norm of increments 

where N is the number of free surface nodes and y f  +' = yf + W A Y : + ' ,  o being a relaxation 
coefficient. If the norm is smaller than a small tolerance E, the process has converged and is 
terminated; otherwise the free surface is moved to its new location and the process returns 
to step (ii). 

RESULTS OF ANALYSES 

Some results are now presented concerning the problem depicted in Figure 2. For simplicity we 
make H and Q equal to unity and call BC = d,  BG = L, DG = b and 

For specified values of a and d the problem contains three free parameters, i.e. L, b and 4 c ,  and 
one more needs to be prescribed to fully define the problem. As pointed out in Reference 6, the 
natural choice from the physical point of view is to fix qc, which is equivalent to specifying the 
pressure far upstream. However, small changes in the pressure lead to large changes in the cavity 

= a. 
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Table I. Results for d=0.1, L= 1.0 

Method b 0 

BEM 0.269 1.039 
FEM 0.226 0.8 12 
FDM 0.297 2.070 

0.30 1 

0.25 1 

0.20 : 

0.15 1 

INITIAL GUESS 
ITERATION 5 
ITERATION 20 
ITERATION 30 
ITERATION 40 
ITERATION 50 
ITERATION 57 

0 05 
1 0 0  1 2 0  1 4 0  1 60 1 8 0  2 0 0  2 20 2 40 2 60  

Figure 3. Convergence pattern for straight line as initial guess (distorted scale) 

length and the problem becomes more difficult from the mathematical point of view. Thus it is 
preferable to fix the length L and compute b and qc as part of the solution. 

Results are presented in Table I for d =0.1, L= 1.0 and a relaxation parameter o = 1.0. These 
results were obtained using two different initial guesses for the free surface: the straight line y = d 
and a quarter of an ellipse with centre along the line EG at y = d and semi-axes L and 0.10. Also 
presented are the FEM solution of Aitchison6 and the FDM one of Mogel and Street.’ It can be 
noticed that the results differ quite considerably. The FDM solution was obtained with a very 
refined mesh with 7450 grid points. The FEM procedure employed a refined moving mesh of 
linear triangular elements, computing the free surface position through a discrete minimization 
problem using a quasi-Newton method. This was solved repeatedly for different assumed values 
of q, until the average pressure in all elements was positive. The BEM discretization employed 43 
linear elements, with eight elements along the plate (line BC), 19 along the free surface (line CD), 
12 along the channel wall (line EF) and four along the truncation boundary (line FA). No special 
analytical consideration was given to the singularity at the separation point C; the discretization, 
however, was graded in such a way that along the free surface the element size varied from 0.007 
near point C to 0.1 near point D. 

The 
convergence patterns for the two different initial free surface positions are depicted in Figures 3 

The BEM solution required a large number of iterations for a tolerance 
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INITIAL GUESS 

0.20 0'25 i 
0.15 

ITERATION 5 ~ 

ITERATION 10 
ITERATION 20 
ITERATION 40 
ITERATION A+ 6 

0 05 

Figure 4. Convergence pattern for ellipse as initial guess (distorted scale) 

Table 11. Results for d=0.1, L=0.5 

Method a b 0 

BEM 1 0.222 1.18 
FEM 1 0.201 1.04 
FDM 0.5 0.242 211 
FDM 1 0.245 1.44 
FDM 2 0.245 1.22 

and 4. Convergence was achieved monotonically for the straight line; for the ellipse the free 
surface went above the correct one before it started bending towards the final position (notice 
results for iteration 20 in Figure 4). It can be seen that both cases converge to the same solution. 

Table I1 depicts the results obtained by the three methods for the case d = 0.1, L = 0-5. The 
FDM appears to be very sensitive to the distance a of the truncating boundary, particularly in the 
calculation of u. This was not the case for both the BEM and the FEM. 

The case d = 0.1, L = 0-5 was also studied with a different BEM approach in Reference 9. 
Convergence of the method was verified by performing several analyses with increasing numbers 
of elements along the free streamline (from five to 25) and subsequently extrapolating the results 
to the limit. Also, the singularity at point C was taken into account by employing a curved 
element in the vicinity of this point. The converged results of Reference 9 are compared with the 
present ones in Table 111. 

Analytical results are only available for a channel of infinite width. The expressions are given 
by Birkhoff and Zarantonello' in terms of elliptic integrals and have been calculated numerically 
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Table 111. BEM results for d = 0.1, L = 0.5 

Method b U 

Present 0.222 1.18 
Reference 9 0.220 1.16 
Reference 9 with curved element 0.222 1.18 

Table IV. Comparison with analytical solution for channel of infinite width 

d L Hld a(BEM) a(FEM) o(FDM) 

1.993 1.876 - 0.2 1 .o 5 
0.1 0.5 10 1.181 1.042 2.1 1 
0.05 0.25 20 0.963 0.877 1.88 

Analytic co 0892 

Table V. Number of iterations (initial guess: ellipse) 

d L No. of iterations w 

0.2 1.0 21 0.25 
0.1 0.5 28 1 .Oo 
0.05 0.25 33 4.00 

by AitchisonG6 Results in Table IV are for a channel with L/d = 5 in which the effect of increasing 
the ratio of channel width to plate width is studied. 

It can be seen that the FDM results are too high because of the small ratio a / d  (compare the 
case d=0.1, L=O5 with Table 11). The FEM ones, on the other hand, are too low since for 
H / d  = 20 they are already lower than the analytical solution. The behaviour of the BEM results 
appears to be correct. 

The iteration procedure in the BEM analysis can be speeded up by using a relaxation 
parameter w different from 1.0. Table V shows the number of iterations required for the solutions 
presented in Table IV. In all cases the results obtained were exactly the same as for w =  1.0, 
showing the robustness of the scheme. 

CONCLUSIONS 

The BEM procedure for solving two-dimensional cavity flow problems described in the present 
paper has been shown to work well for a series of geometric configurations. The results obtained 
are superior to those of other numerical techniques, while the data preparation effort and 
computer time are much smaller. 
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The use of higher-order boundary elements (rather than linear) should lead to even more 
accurate results. In order to reduce the number of iterations, different forms for the approxima- 
tion given by equation (18) are now being studied. Extension to axisymmetric cavity flow 
problems is also under way. 
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